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We examine the destruct ion of a mater ia l  with the formation of a liquid film. Radiation with- 
in the m a t e r i a l  is taken in approximation of radiant heat t ransfer .  We have derived a final 
formula which re la tes  the entrainment in the gaseous phase with the decisive pa rame te r s  of 
the problem.  

The problem of destroying a g lass - l ike  mater ia l  in the hypersonic flow of a gas reduces to the s imul-  
taneous solution of the equations for a multicomponent boundary layer and the equations for a viscous liquid 
glass  fi lm and for the joining of these solutions at the front of the destruction.  Reference [1] gives these 
equations for the vicinity of the cr i t ical  point and line. In the solution of the l iquid-film equations it is usu- 
al to neglect the radiant t r ans fe r  of heat within the coating. The radiation within the body is taken into con- 
sideration in [5]. However, here  it is only the heat-conduction equation and the radiation hea t - t r ans fe r  
equation that a re  solved numer ica l ly  here,  with no considerat ion given to the equation of motion. 

If we consider  the radiation within the material ,  the equations for the nonsteady boundary layer  in the 
case  of the melt  film in the vicinity of the c r i t ica l  point and line will differ f rom the corresponding equations 
of the paper by Tirski i  only in connection with the t e r m  - 0 H y / 0 y  in the energy equation. Here Hy denotes 
the radiant energy flux along the y-axis ,  directed along the normal  to the surface.  

In the approximation of radiant heat t ransfer  [2] we have 

H u _  163 Piarg~T] dT idy 163 lrarT~d~ " (1) 

We will assume that the v iscos i ty  of the g lass- l ike  mater ia l  is a function of tempera ture  in the follow- 
ing manner:  

~i = ~* exp (T*/T 0 when T i > T**, 
(2) 

Ixi = oo when T i ~< T**, 

i . e . ,  below a t empera tu re  T** the glass  is a solid, and/z*, T*, and T** a re  constants.  

Repeating the t ransformat ions  and evaluations of [1], we find the dimensionless equations of motion 
for the liquid film, in conjunction with the radiation: 

d~(P' -- (% +~h)exp ( - - @ l )  
d~l~ 

[ (1 + 031) d0,] + --d~ 
dlqt [ d~h J %dl h 

0 

with the boundary conditions 
% (0) == %, O~ (0) = 0 0 ~- Tw/T*, 

dqh (co) -- O, O~ (co) = Ore= TIn~T*. 
d~  

(3) 

(t) 

(5) 
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H e r e  X R = 1 6 / 3 ~ r T * a / X l p l a r  is  a new d i m e n s i o n l e s s  p a r a m e t e r  that  is a funct ion of the absorb t ion  f ac to r .  
The  coef f i c i en t  C~r, g e n e r a l l y  speaking,  is  a funct ion of the t e m p e r a t u r e  and of the p r o p e r t i e s  of the m a t e -  
r i a l .  But s ince  we have v e r y  l i t t le  i n fo rma t ion  about  this  quanti ty ,  we will  a s s u m e  in the fol lowing that 
~r = corlst. 

Initially we will solve (3) and (4) in approximate terms. We note that when 71 varies from 0 to ~, there 

is a reduction in the value of 01 from 00 to 0 m, while the function qPl increases from a I to some constant 

which we denote d (it represents the dimensionless total entrainment). The change in the function ~01 takes 

place in a very narrow layer, and we will therefore comit no great error by replacing q01 in (4) by d = const. 
Equation (4) can then be solved separately. Integrating that equation twice, in conjunction with (5) we will 
derive the formula which relates 71 with 0 i: 

1 +;L~O: --0~ )~ {  1 
In 0, + , 0m [(0, - -  0~ ~ (0o - -  0~ ~] + 3 (0, - -  00) (6) 

0 ,  - -  d 0 o - -  0 m T T [ (0 ,  - -  0 4  - -  (00 - -  + 
J 

F r o m  (6) we can find the a p p r o x i m a t e  r e l a t ionsh ip  be tween 0 1 and 71 which is  in good a g r e e m e n t  with (6) fo r  
s ma l l  ~1. We wil l  seek  this  r e l a t i onsh ip  in this  f o r m  

0 i - -  0 m = (0 o - -  0 m) exp (-- PPh - -  Pzrl~) . (7) 

In this  c a s e  

p,  = d/(1 + ,%R 03o), P2 = 1,5 d2XR 003 (0 o - -  0r~V(1 + LR 0o3)3. 

We will a p p r o x i m a t e  the v i s c o s i t y  f o r m u l a  (2) in a c c o r d a n c e  with Beta  and Adams  [3] 

0 o -- O~/ 
Using (7) and (8) we will  t r a n s f o r m  (3) to 

d2q~' - - - -  ( ~ - o )  ( 0~ o2--- ~i - -  P~ 0~ ) - O o  2 -  d~ lT- - - - (~o+~h)exp  - -  exp - - p ,  ~1~ 
I z 

i n t eg r a t e  the las t  equat ion twice,  r ep l ae ing  the p robab i l i t y  in t eg ra l  ~ (z) = 2/~-7r l'exp (- tZ)dt  by the We w i l l  

fol lowing a sympto t i c  expans ion  [4]: 

(8) 

] / -~[1--Cg(z)]  = exp ( - - z  2) {I 1 + 1-3 1.3.5 } 
2 2z 2z - T  (2P) ~ (2z2) 3 ~- . . . .  

If we b e a r  in mind  that  q~l(O) = al ,  ~o1(~o ) = d, we de r i ve  the f inal  fo rmula  

c q = d - - [ %  ( 1 - - 9 0  o ~n03 ) 20~(1+~,,~0o3 ) ( I - -1800  ~,R0o3 )]  ( ~ o )  0~(1 +~n003) 2 
1 + ~,R 003 -t (O o - -  0.~ d t + ~,n 003 exp - -  (0o _ 0~.~ ~ d 2 (9) 

To  eva lua te  the a c c u r a c y  we will  c o m p a r e  s e v e r a l  ca lcu la t ions  a c c o m p l i s h e d  with this  f o rmu la  with 
the n u m e r i c a l  so lu t ions  f r o m  (3) and (4). To  avoid  solving the b o u n d a r y - v a l u e  p r o b l e m  with the boundary  
condi t ions  (5) we will  p r o c e e d  f r o m  the a sympto t i c  cu rve ,  bea r ing  in mind that  fo r  l a rge  01 we have ~1~1 =d, 
while 01 and d01/d71 a r e  a s s o c i a t e d  with 71 by re l a t ionsh ip  (6) in which 0 0 mus t  be r e p l a c e d  by some  con-  
s t an t s .  Then,  having spec i f i ed  the va lue  fo r  ~1 = 7~, we r e p l a c e  condi t ions  (5) by the following: 

% (,11) = d, O, (0;) = O, > %, 
(i0) 

@ , ( 0 _ 0 ,  d O , ( n ; ) _ _  0 ~ - - 0 ~  d. 
d~q, d~h 1 + ,%R 0~" 

The value of 0~ has been chosen so that for 7~ the right-hand member of (3) is equal to zero. This eliminates 

the need of assigning a specific value to T** (see (2)). Solving the problem with conditions (10) at the right- 

hand end, at the left-hand end we derive certain values of qP1(0) = o~ I and 0 i(0) = 00. With a change in ~ 

these values will change. It is thus possible to construct curves showing al as a function of 00 with the 

values of the remaining parameters fixed. For 0 m = 0.008, d = 10 -3, T O = i000 these curves are shown in 

Fig. i. For purposes of comparison, here we also find the curves corresponding to formula (9). As we 
can see, the deviations from the exact value are insignificant. Having the solution for the liquid film, we 
can combine it with the solution for the gas phase. 
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Fig.  1. The d imens ion l e s s  en t ra inment  in the 
gas  phase  as  a function of the d imens ion l e s s  
t e m p e r a t u r e .  The so l id  l ines  denote compute r  
ca lcu la t ion  while the dashed l ines  denote ca l cu -  
la t ion in acco rdance  with fo rmula  (9): 1) X = 105; 
2) 104; 3) O. 

Let us cons ide r  the p r o b l e m  of the su i tab i l i ty  of 
the approx imat ion  of rad ian t  heat  t r a n s f e r  to the p r o b -  
l em of des t roy ing  a g l a s s - l i k e  m a t e r i a l  with fo rmat ion  
of a l iquid f i lm.  Exp r e s s i on  (1) for  the flux of rad ian t  
energy  is  va l id  only in the ca se  of weak rad ia t ion  ani -  
so t ropy  [2]. If we a r e  ca lcu la t ing  for  a point deep within the 
m a t e r i a l ,  at  a d i s tance  g r e a t e r  than l r ,  and ff l r is  s m a l l e r  
than the d i s tance  at  which the t e m p e r a t u r e  d i f ference  
is  subs tant ia l ,  the an i so t ropy  is sma l l .  At the s u r -  
face  the an i so t ropy  may not be s m a l l  and the actual  
t e m p e r a t u r e  d i s t r ibu t ions  within a l aye r  of o rde r  l r 
may differ  somewhat  f rom that  ca lcu la ted .  However,  
s ince  the v i s c o s i t y  of the g l a s s  depends s igni f icant ly  
on the t e m p e r a t u r e ,  even a s l ight  d i f ference  in t e m -  
p e r a t u r e  may y ie ld  a s ignif icant  e r r o r  in the d e t e r -  
minat ion of the en t ra inment  in the l iquid phase .  Our 
approx imat ion  is  t h e r e f o r e  doubt less ly  appl icab le  only 
to the ca se  in which l r is  s m a l l e r  by an o r d e r  of mag-  
nitude than the th ickness  of the l iquid f i lm.  However,  
even for such sma l l  l r f a i lu re  to account  for  the r a d i a -  
t ion may lead  to s igni f icant  e r r o r .  Fo r  example,  if 

the f i lm th ickness  is  l m m ,  we have l r = 0.1 mm, and the t he rmophys i ca l  p a r a m e t e r s  a r e  the s ame  as  in the 
ca se  of quar tz  g l a s s  [1], so that  XR = 104, and unlike the ca se  without r ad ia t ion  (X R = 0) it  is  r a t h e r  l a rge ,  
as  we can see  f rom F ig .  1. 

Calcula t ion  of the r a t e  of en t ra inment  for  the quar tz  g l a s s  for the mos t  in tens ive ly  heated point of a 
typ ica l  r e e n t r y  t r a j e c t o r y  at  e scape  ve loc i ty  y i e lds  the following r e s u l t s .  Cons idera t ion  of the rad ia t ion  
when l r  = 0.1 m m  (XR = 104) i n c r e a s e s  the r a t e  of en t ra inment  by 22%, while for  1 r = 1 m m  (k R = 105) the 
co r r e spond ing  f igure  is  2.84. In this  c a s e  the en t ra inment  as  a consequence of va r po r i z a t i on  v i r t ua l l y  does 
not change, but  t h e r e  is  a v e r y  subs tan t i a l  i n c r e a s e  in the en t ra inment  in the l iquid phase .  

The l i t e r a t u r e  contains  v i r t u a l l y  no informat ion  on the absorb t ion  fac to r  in g l a s s e s  at  high t e m p e r a -  
t u r e s .  Here  we r e q u i r e  bas i c  exper imen ta t ion  to f i l l  th is  gap.  However,  we wil l  c i te  the data f rom [6]. 
F o r  g l a s s e s  with va ry ing  i ron  contents  we have l r = 0.05-10 cm.  

It is  obvious that  for  coat ings  of pu re  quar tz  g l a s s  the approx imat ion  of rad ian t  heat  t r a n s f e r  is  u se -  
l e s s .  However,  coat ings  which contain r e s i n s ( g l a s s ,  Tex to l i t e ) in  addi t ion to the quar tz  may exhibit  such 
s m a l l  l r  that  the use  of th is  approx imat ion  i s  ju s t i f i ed .  

Moreover ,  n u m e r i c a l  ca lcu la t ions  of the equations of r ad ia t ion  and heat  t r a n s f e r  f rom [5] - with con- 
s ide ra t ion ,  however ,  of the rad ia t ion  f rom the impac t  l a y e r  - show that  for  c e r t a i n  va lues  of the p a r a m e t e r s  
the path of the rad ia t ion  l r is  no s m a l l e r  than the th ickness  of the l iquid f i lm,  while the l a y e r  with not iceable  
an i so t ropy  of r ad ia t ion  is  subs tan t ia l ly  s m a l l e r  than this  th ickness ,  s ince  the an i so t ropy  d imin i shes  as  a 
consequence  of the fact  that  the r a y s  a r e  r e f l ec t ed  f r o m  the l i q u i d ,  gas sur face ,  as  well  as  in the p r e s e n c e  
of r ad ia t ion  f r o m  the impac t  l a y e r .  In these  c a s e s  our approx imat ion  is  a l so  va l id .  

y is  the 
Hy is  the 
T 1 is  the 
Pl is  the 
c~ r is  the 
~r  is  the 
l r  is  the 

#*, T*, and T** 

0 1 = T 1 / T *  

N O T A T I O N  

coordinate ;  
r ad ian t  energy flux; 
t e m p e r a t u r e  in the fi lm; 
f i lm density;  
f r e q u e n c y - a v e r a g e d  absorb t ion  factor ;  
S t e f an -  Bol tzmann constant;  
mean f r ee  path of the radia t ion;  

i s  the v i s c o s i t y  of the fi lm; 
a r e  cons tan ts  in fo rmula  (2); 
i s  a d imens ion l e s s  s t r e a m  function; 
is  the d imens ion l e s s  t e m p e r a t u r e ;  
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T 0 

k R 

0 0 = T w / T ~ ;  

0 m = T I n / T * ;  

T w  
T m  

d 

Pl a n d  P2 
Z 

(z) 

is a dimensionless coordinate directed perpendicular to the surface of the material; 
is the dimensionless friction at the surface; 
is a dimensionless parameter which is a function of the absorbtion factor; 

is the temperature at the film surface; 
is the temperature within the depth of the material; 
is the total dimensionless entrainment; 
is the dimensionless entrainment in the gas phase; 
are parameters in formula (7); 
is a variable in the probability integral; 
is the probability integral. 
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