DESTROYING A GLASS-LIKE MATERIAL IN THE HYPERSONIC
FLOW OF A GAS WITH CONSIDERATION OF RADIANT HEAT
TRANSFER WITHIN THE MATERIAL

-

E. Z. Apshtein UDC 536.422.1

We examine the destruction of a material with the formation of a liquid film. Radiation with-
in the material is taken in approximation of radiant heat transfer, We have derived a final
formula which relates the entrainment in the gaseous phase with the decisive parameters of
the problem,

The problem of destroying a glass-like material in the hypersonic flow of a gas reduces to the simul-
taneous solution of the equations for a multicomponent boundary layer and the equations for a viscous liquid
glass film and for the joining of these solutions at the front of the destruction. Reference [1] gives these
equations for the vicinity of the critical point and line. In the solution of the liquid-film equations it is usu-
al to neglect the radiant transfer of heat within the coating, The radiation within the body is taken into con-
sideration in [5]. However, here it is only the heat-conduction equation and the radiation heat-transfer
equation that are solved numerically here, with no consideration given to the equation of motion,

If we consider the radiation within the material, the equations for the nonsteady boundary layer in the
case of the melt film in the vicinity of the critical point and line will differ from the corresponding equations
of the paper by Tirskii only in connection with the term —8Hy/8y in the energy equation. Here Hy denotes
the radiant energy flux along the y-axis, directed along the normal to the surface.

In the approximation of radiant heat transfer [2] we have
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We will assume that the viscosity of the glass-like material is a function of temperature in the follow-
ing manner:

py = p*¥exp(T*/T ) when T, > T**, )

Py = © when Ty < T*%,

i.e., below a temperature T** the glass is a solid, and 4*, T*, and T** are constants.

Repeating the transformations and evaluations of [1], we find the dimensionless equations of motion
for the liquid film, in conjunction with the radiation:
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with the boundary conditions
¢ (0 =0y, 0,0)=8,=T,/T*, o
Yo () =0,  8;(0) =0py=Tr/T"
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Here AR = 16/30,T*/A p a,. is a new dimensionless parameter that is a function of the absorbtion factor.,
The coefficient ¢y, generally speaking, is a function of the temperature and of the properties of the mate-
rial. But since we have very little information about this quantity, we will assume in the following that
oy = const,

Initially we will solve (3) and (4) in approximate terms. We note that when n, varies from 0 to «, there
is a reduction in the value of 8, from 6, to 8y,, while the function @; increases from @, to some constant
which we denote d (it represents the dimensionless total entrainment)., The change in the function @; takes
place in a very narrow layer, and we will therefore comit no great error by replacing ¢; in (4) by d = const,.
Equation (4) can then be solved separately. Integrating that equation twice, in conjunction with (5) we will
derive the formula which relates 7; with 6:
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From (6) we can find the approximate relationship between 6, and 7; which is in good agreement with (8) for
small n;, We will seek this relationship in this form
0y — 0= (8, — B exp (— pyy — p})- {7
In this case
py=d/(1 + Ar8}), p,=15dA062(0, —0/(1 + hp ).

We will approximate the viscosity formula (2) in accordance with Beta and Adams {3]
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Using (7) and (8) we will transform (3) to
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We will integrate the last equation twice, replacing the probability integral &(z) = 247 \exp (—t%)dt by the

following asymptotic expansion [4]:
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If we bear in mind that ¢, (0) = ay, ¢, (») = d, we derive the final formula
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To evaluate the accuracy we will compare several calculations accomplished with this formula with
the numerical solutions from (3) and (4). To avoid solving the boundary-value problem with the boundary
conditions (5) we will proceed from the asymptotic curve, bearing in mind that for large 8; we haven,¢, =4,
while 6, and d6,/dn, are associated with n; by relationship (6) in which 8 must be replaced by some con-
stants, Then, having specified the value for 1; = #¥, we replace conditions (5) by the following:

er(m)=d, 6, (n)=6>0,,

do(n) _ o ) _ 6/ —6n
dny ’ dn, I+ 2Ag0]

The value of 6F has been chosen so that for nf¥ the right-hand member of (3) is equal to zero, This eliminates
the need of assigning a specific value to T** (see (2)). Solving the problem with conditions (10) at the right-
hand end, at the left-hand end we derive certain values of ¢;(0) = @ and ¢ ,(0) = 84. With a change in 7§
these values will change. It is thus possible to construct curves showing @, as a function of 8, with the
values of the remaining parameters fixed. For 8, = 0.008, d= 1073, T, = 1000 these curves are shown in
Fig. 1. For purposes of comparison, here we also find the curves corresponding to formula (9). As we
can see, the deviations from the exact value are insignificant, Having the solution for the liquid film, we
can combine it with the solution for the gas phase,

(10)
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0_‘; - Let us consider the problem of the suitability of
10 the approximation of radiant heat transfer to the prob-
lem of destroying a glass-like material with formation

3 of a liquid film, Expression (1) for the flux of radiant

2 energy is valid only in the case of weak radiation ani-

5 A\ sotropy [2]. If we are calculating for a point deep within the

49510 . material, ata distance greaterthanl,., andif,.is smaller
\ than the distance at which the temperature difference
\ is substantial, the anisotropy is small., At the sur-
\ " face the anisotropy may not be small and the actual
| \\ temperature distributions within a layer of order I,

0 207 1 oo may differ somewhat from that calculated. However,

i ’ ’ o since the viscogity of the glass depends significantly
Fig. 1, The dimensionless entrainment in the on the temperature, even a slight difference in tem-
gas phase as a function of the dimensionless perature may yield a significant error in the deter-
temperature. The solid lines denote computer mination of the entrainment in the liquid phase. Our
calculation while the dashed lines denote calcu- approximation is therefore doubtlessly applicable only
lation in accordance with formula (9): 1)A = 10% to the case in which I, is smaller by an order of mag-
2) 104; 3) 0. nitude than the thickness of the liquid film, However,

even for such small I, failure to account for the radia-

tion may lead to significant error, For example, if
the film thickness is lmm, we have I, = 0.1 mm, and the thermophysical parameters are the same as in the
case of quartz glass [1], so that AR = 104, and unlike the case without radiation (AR = 0) it is rather large,
as we can see from Fig, 1.

Calculation of the rate of entrainment for the quartz glass for the most intensively heated point of a
typical reentry trajectory at escape velocity yields the following results, Consideration of the radiation
when Iy = 0.1 mm (AR = 10%) increases the rate of entrainment by 229, while for lpy=1mm (Ag = 10%) the
corresponding figure is 2,84, In this case the entrainment as a consequence of varporization virtually does
not change, but there is a very substantial increase in the entrainment in the liquid phase,

The literature contains virtually no information on the absorbtion factor in glasses at high tempera-
tures. Here we require basic experimentation to fill this gap. However, we will cite the data from [6].
For glasses with varying iron contents we have I, = 0,05-10 cm,

It is obvious that for coatings of pure quartz glass the approximation of radiant heat transfer is use-
less. However, coatings which contain resins(glass, Textolite)in addition to the quartz may exhibit such
small Iy that the use of this approximation is justified.

Moreover, numerical calculations of the equations of radiation and heat transfer from [5] — with con-
sideration, however, of the radiation from the impact layer — show that for certain values of the parameters
the path of the radiation ;. is no smaller than the thickness of the liquid film, while the layer with noticeable
anisotropy of radiation is substantially smaller than this thickness, since the anisotropy diminishes as a
consequence of the fact that the rays are reflected from the liquid—gas surface, as well as in the presence
of radiation from the impact layer. In these cases our approximation is also valid.

NOTATION
y is the coordinate;
Hy is the radiant energy flux;
Ty is the temperature in the film;
Py is the film density;
ayp is the frequency-averaged absorbtion factor;
Oy is the Stefan— Boltzmann constant;
ly is the mean free path of the radiation;
My is the viscosity of the film;
p*, T*, and T** are constants in formula (2);
Py is a dimensionless stream function;
84="T4 /T* is the dimensionless temperature;
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Ul is a dimensionless coordinate directed perpendicular to the surface of the material;
Ty is the dimensionless friction at the surface;
AR is a dimensionless parameter which is a function of the absorbtion factor;
§g= TW/T*;
8m=Tm/T%
Tw is the temperature at the film surface;
Tm is the temperature within the depth of the material;
d is the total dimensionless entrainment;
ay is the dimensionless entrainment in the gas phase;
pi and p, are parameters in formula (7);
Z is a variable in the probability integral;
®(z) is the probability integral,
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